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Fractal Dimension and Grand Universality of 
Critical Phenomena 
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Conformation of branched random fractals formed in equilibrium processes is 
discussed using a Flory-type theory. Within this approach we find only three 
distinct types or classes of random fractals. We call these the extended, the 
compensated, and the collapsed states. In particular, the critical clusters in 
thermal phase transitions are found to be of the compensated type and have 
approximately the same value of the fractal dimension. The Flory theory 
predicts the upper critical dimension for these clusters to be 6 instead of 4. This 
result and the apparent "grand" universality of the fractal geometry of the 
clusters in critical phenomena are discussed. 
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1. HNTRODUCTION 

Fractals  (1) and the concept of fractal dimensionali ty have recently received 
considerable attention tH3) owing to their applicability to a wide range of 
physical phenomena,  including percolation, (1-5) polymers, ~6-s) 

aggregation, (9-12) and gelation. (12'~3) The fractal dimension D of an object 

embedded in a d-dimensional  space has a value between 1 and d. Therefore, 
depending on the details of the process used to form the fractal, an object 

can have a value of D different from that of any other fractal. Thus, a 

natural  question to ask is: How fundamental  are these fractal dimensions? 
Are all fractals different, or, are some of them of the same basic type? The 
situation here is very much analogous to particle physics, where a wide 
variety of so called "elementary" particles are found in nature. What  one 
would like to do is to find a classification scheme for these particles. In such 
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a scheme, either all particles are found to be equally "fundamental," or, as 
the case appears to be, they can be cataloged into a finite number of classes 
of particles. 

Fractals can be divided into two basic types: (a) deterministic fractals 
and (b) statistical (or random) fractals. Deterministic fractals are self-similar 
objects that are precisely constructed from some basic rules. (1) The best 
examples of these fractals are the -Koch  curve, (~) Sierpenski gaskets, (1) 
Havlin carpets, "4) and Vicsek snowflakes t15) (see Fig. 2a). The most 
important property of deterministic fractals is that their fractal dimension is 
exactly known. Since a given line, plane, or volume can be divided up in an 
infinite number of different ways, it is possible to construct infinitely many 
different deterministic fractals with different fractal dimensions. Therefore, 
deterministic fractals cannot be classified into a finite number of classes 
without introducing, in addition to their fractal dimension, other parameters 
to characterize them. 

In contrast to deterministic fractals, statistical fractals are constructed 
by random processes. The element of randomness makes them a more 
realistic representation of physical phenomena. The fact that randomness 
alone, i.e., without any spatial correlations, is sufficient to produce fractals 
was first pointed out by Mandelbrot. ~) The best example of such a fractal is 
the path of a random walker. However, purely random models are inade- 
quate for most applications to real physical systems. (s) The reason is that the 
excluded volume effect, which is the geometrical constraint that prohibits 
two different elements from occupying the same spatial point, is not taken 
into account in these models. For this reason, a wide variety of random 
models with excluded volume have been introduced and studied in the past 
several years. Perhaps the best-known examples of these models are self- 
avoiding random walks, (16) lattice animals, ~17-~9) and random 
percolation. (4,20) 

Fractals have distinct topological structures depending on the maximum 
number of elements that can be joined to a given element of the system. If 
each element can be connected to at most two other elements, the resulting 
structure has no branches. In analogy with linear polymers, we call these 
types of structures "linear" fractals. Ill contrast, when branching can occur, 
i.e., three or more elements can be joined to a given element, the resulting 
fractal has a networklike structure. We call these types of objects "branched" 
fractals. Figure 1 shows two examples of "linear" fractals, (a) a Koch curve 
and (b) a self-avoiding walk, representing, respectively, an example of a 
deterministic fractal and a random fractal. Figure 2 shows two examples of 
"branched" fractals, (a) a Vicsek snowflake (~5) and (b) a percolation cluster, 
representing, respectively, an example of a determinstic fractal and a random 
fractal. For the sake of clarity we confine our discussion and calculations to 
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(a) (b) 

Fig. i. Two examples of linear fractals: (a) a Koch curve, and (b) a self-avoiding walk, 
representing a deterministic fractal and a random fractal, respectively. 

branched random fractals.  2 The case of  l inear r andom fractals  follows 

similarly.  
How many different types of random fractals exist in equilibrium 

clustering phenomena? This is the main question of  interest in this paper.  We 
begin with some prel iminaries  in Sections 2 and 3. In Section 2 we discuss 
the definit ion of  a cluster and point  out  the impor tance  of  proper ly  defining a 
cluster for interacting systems. In Section 3 we define a fractal  and show 
how its fractal  dimension D is determined.  We discuss the known scaling 
relation between D and the cri t ical  exponents for percola t ion and show that  
in thermal  cri t ical  phenomena  a s imil iar  relat ion can be defined between the 
fractal  dimension of  cri t ical  clusters and the cri t ical  exponents. Using this 
relation we determine the fractal  d imension of  a wide variety of  models  of  
cri t ical  phenomena.  The results are listed in Table  I, where it is seen that  the 
cri t ical  clusters appear  to have approximate ly  the same value of  D. This 
result was first recognized by Suzuki, (21) in the context of  cri t ical  

2 We only consider systems with isotropic, short-range interactions. We also do not consider 
conformation of other fractals on random fractals, e.g., backbone, etc. 
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Fig. 2. 

(b) 

Two examples of branched fractals: (a) a Vicsek showfiake, and (b) a percolation 
cluster, representing a deterministic fractal and a random fractal, respectively. 
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Table I, Fractal Dimension of the Critical Clusters in 
Critical Phenomena Determined from the Scaling Relation (3) 

d Model D 

2 q-state Potts model(4 ~) 
q = 1 (percolation) 91/48 = 1.896 
q = 2 (Ising) 15/8 = 1.875 
q = 3 (hard-Hexagon) 28/15 = 1.867 
q = 4 (Baxter-Wu) 15/8 = 1.875 
Baxter-Wu model with impurities (42) 1.9 + 0.1 

3 q-state Potts model: 
q = 1 (percolation) (52) 2.48 5:0.09 
q = 2 (Ising) (53) 2.484 5:0.004 

n-vector model(~3): 
n = 1 (Ising) 2.484 • 0.004 
n = 2 (XY) 2.483 5:0~004 
n = 3 (Heisenberg) 2.483 • 0.004 
n = oo (spherical) 2.5 
Ising magnet with impurities(~4) 2.48 + 0.08 
"Nonuniversal" microemulsion 2.4 5:0.1 (43) 

systems 2.5 5:0.1 (44) 
2.4 • 0.1 (45) 
2.5 i 0.07 (4~) 
2.5 • 0.1 (46) 
2.6 5:0.2 (47) 

phenomena,  who proposed that all critical systems have the same value of 

the magnetic scaling power (this is often called the extended universality 
hypothesis). In order to classify random fractals into different classes, we 
begin Section 4 by determining the values of D for random fractals using the 

Flory approach for polymers. (22-27) We find that within this approximation, 

random fractals have only three possible conformations depending on the 

statistics of the system. We call these three conformations the extended state, 

the compensated state, and the collapsed state of a random fractal. In 
particular, critical clusters, i.e., large closters at the critical points, have the 
conformation of a cluster in the compensated state. This implies that from 
the point  of view of fractal geometry, the compensated state is like a "grand"  

universality class to which all critical clusters belong. This result provides a 
clear interpretation of the Suzuki universality. (21) In addition, we find that 
the upper critical dimension for the fractal dimension of critical clusters is 

d c = 6, instead of the usual dc = 4 for critical phenomena.  
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2. PROPER DEFINIT ION OF A CLUSTER 

The basic objects whose fractal properties we would like to investigate 
here are the clusters formed in a random process. Therefore it is important to 
have a precise definition of a cluster. For the sake of clarity, consider lattice 
models in which the basic elements of the system, e.g., spins, monomers, 
particles, atoms, etc., are placed at lattice sites or bonds. Usually a cluster is 
defined as a collection of elements connected by nearest-neighbor distances. 
This definition is known to be suitable for describing clusters in geometrical 
models like percolation, ~4'2~ and lattice animals. ~'~8) However, a purely 
geometrical definition is inadequate for systems where thermal interactions 
are present. ~28-3~ The reason is that when thermal interactions are present 
the equilibrium conformation of a cluster is determined by both geometrical 
and thermal correlations. 

In thermal critical phenomena, the main problem is a proper definition 
of the cluster whose size diverges at the critical point of the system with the 
correct exponents.~28-3~ It is well known that the usual definition of a cluster 
as a collection of nearest-neighbor elements does not describe a critical 
system properly. For example, in the Ising model, clusters made of nearest- 
neighbor "down" spins diverge below the critical temperature in three 
dimensions. ~3~) In two dimensions, these clusters are topologically 
constrained to diverge at the critical point, ~32) but the mean cluster size 
diverges with an exponent larger than the susceptibility exponent. ~33) One 
possible definition has been proposed by Coniglio and Klein t28) for the Ising 
model, and has been extended to the q-state Potts model by Coniglio and 
Peruggi. ~3~ In these models Cz8'3~ a cluster is made of nearest-neighbor 
elements connected by thermally active bonds, the probability of a bond 
being active is p and inactive 1 - p. The elements interact according to the 
system Hamittonian and the bonds are onty introduced to define the connec- 
tivity between two nearest-neighbor elements. Thus, the presence or absence 
of a bond does not affect the thermal interaction energy between the 
elements. Using this definition, large clusters made of, say, nearest-neighbor 
down spins in the Ising model are broken up into smaller clusters by the 
introduction of the bond probability p. Renormalization group 
calculations ~28'29~ and Monte Carlo simulations ~34) have shown that these 
clusters diverge at the critical point with the correct exponents. Therefore in 
the study of thermal critical phenomena, whenever we refer to a cluster we 
mean a propertly defined cluster similar to the ones discussed above. 

3. FRACTAL D I M E N S I O N  A N D  SCALING 

The fractal dimension D is a quantitative measure of the degree of 
ramification or stringiness of an object and is defined in the following way. ~) 

822/36/5 6-25 



886 Family 

First, the size of the object is determined by covering it with d-dimensional 
spheres of diameter r. Let us assume that N is the number of spheres needed 
to cover it. If  in the limit as r ~ 0, N varies as 

N ~ r -D (r ~ 0) (1) 

then D is the fractal dimension of the object. In this definition the object is 
assumed to be scale invariant at all length scales smaller than its overall size. 

In a real object there exists a minimum microscopic length scale of the 
order of the diameter of a typical element of the  system beyond which scale- 
invariance property breaks down. This implies that the limit r ~ 0 cannot be 
taken in a real object and relation (1) cannot be used to define D. However, 
D can be determined if the length of the object, e.g., its average radius, tends 
to infinity as the number of elements N in the object tend to infinity. In order 
to define D in this case, we note that if the number of spheres of radius r 
needed to cover a fractal varies as r -~  then the number of elements within a 
sphere of radius R must scale as R D. Therefore, in the limit N ~  ~ ,  D is 
defined by 

N ~ R ~ (R --, c~) (2) 

In polymer literature t8'24) this relation is generally written as R ~ N v~ where 
the Flory exponent v F = l I D .  

The fractal dimension of purely random models, i.e., models without the 
excluded volume effect, can be determined exactly. For linear fractals this 
corresponds to the path of a random walker, t~) Since the mean-square end- 
to-end distance of a random walker is proportional to the number of steps N, 
then relation (2) implies that D = 2, independent of the dimensionJ ~) For 
branched random fractals, the corresponding model is a randomly branching 
cluster whose branches obey the random walk statistics. These types of 
structures have been studied in a number of different contexts, ~35-37) where it 
is found that D = 4, independent of the dimension. In contrast to these 
"ideal" random models, models with excluded volume, i.e., with correlations, 
cannot be solved exactly in general. The values of D for these types of 
systems are usually obtained from either numerical methods, such as Monte 
Carlo simulations 0'4'9'1~ and exact enumerations, (39'19) or from position 
space renormalization group calculations, tS'~l) 

Scalling Relation for D 

A scaling relation between the fractal dimension D and critical 
exponents was first obtained for percolation. ~2-5) The probability P m ( p )  that 
at concentration p an element of the system belongs to the infinite cluster 
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varies as Po~ ~ (P - Pc) s, where fl is the order parameter exponent and Pc is 
the percolation threshold. (4'a~ At the critical point, according to finite size 
scaling, P~ ~ L  -~/~, where L is the length of the system and v is the 
correlation length exponent. Therefore, in a d-dimensional finite system of 
side L, the number of elements belonging to the infinite cluster varies as 
LdL-~/~, implying that D = d - f l / v .  Using the relations v -1 = YT- and fl = 
( d -  Yh)/YT between the critical exponents and the thermal scaling power Yr 
and the magnetic scaling power Yh, we find the well-known relation 

D = d - / ~ / v  --  y~ (3) 

This scaling relation for D has been extensively tested for percolation.t2-~) 
Following similar arguments as for the infinite cluster in percolation, a 

scaling relation can be obtained between D and the exponents in thermal 
critical phenomena. Consider the largest cluster in a system at the critical 
point. The fraction of the elements of the system belonging to this cluster is 
proportional to the order parameter which varies near T c as e ~, where e = 
( T -  Tc)/T c. Again, at the critical point, finite size scaling asserts that the 
number of elements in the critical cluster varies as L a ~/". This implies that 
for critical phenomena, D is given by relation (3), but with the exponents fl 
and v of thermal critical phenomena. Recently, r176 the scaling relation (3) 
has been verified in d - 2  for the q-state Ports model by a direct 
measurement of the fractal dimension of Potts clusters. 

With the use of relation (3), the fractal dimension of critical clusters in 
a wide variety of systems can be determined. Table I contains a list of these 
values for the most commonly studied models of critical phenomena. It is 
not difficult to see from this table that in contrast to what might have been 
expected--that  the value of D are randomly distributed between 1 and 
d-- these  systems have values of D that are much closer to each other than 
to either 1 or d. This behavior is considerably different from the behavior of 
the thermal critical exponents. For example, the exponent a for the pure 
Baxter-Wu ~4~) model is 2/3, whereas its value for the Baxter-Wu model with 
impurities r is ~0. In contrast, both models have D ~ 1.9. In order to 
emphasize the generality of this observation, we have listed the values of D, 
obtained from relation (3), for a number of microemulsion systems r 
which have very unusual or "nonuniversal" exponents. Again, their fractal 
dimension is approximately the same as other critical systems. 

The above result was first recognized by Suzuki, ~21) who postulated that 
all critical systems have the same value of the magnetic scaling power (this 
is usually called the extended universality hypothesis). In the next section we 
provide a physical interpretation of this "grand" universality based on fractal 
concepts. 
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4. E Q U I L I B R I U M  C O N F O R M A T I O N  OF R A N D O M  FRACTALS 

What are the basic equilibrium shapes of random fractals? In order to 
answer this question, let us begin by listing the values of the fractal 
dimensions of models of random fractals in Table II. By looking at this table 
we see that the numbers fall essentially into three groups. In Sections 4.1-4.3 
we use a Flory-type theory t22-27) to explain why random fractals have only 
three possible equilibrium shapes. We also determine the fractal dimension 
and the upper critical dimension dc, for each case. 

Table II. Fractal Dimension of Equilibrium Models of Random 
Fractals in Two and Three Dimensions 

d Model D 

2 Lattice animals (random clusters, 1.56 
branched polymers) 

Critical clusters (see Table I) ~ 1.9 
Compact clusters 2 

3 Lattice animals, (random clusters, 2 
branched polymers) 

Critical clusters (see Table I) ~2.5 
Compact clusters 3 

4.1.  Extended State 

Let us begin by considering the following question: Under what 
physical condition(s) will a random fractal have the most ramified structure? 
Clearly when there are many clusters in the system they all compete for the 
available volume. Therefore, presence of other clusters limits the extent to 
which a cluster can become ramified; a cluster is more ramified in isolation 
than in a concentrated "solution." 

The second factor which affects the shape of a cluster is the presence or 
absence of attractive interactions. For example, attractive interactions are 
less effective at high temperatures than at low temperatures. Therefore, an 
isolated random fractal at high temperatures will have a more ramified 
structure than at low temperatures. The best examples of this type of object 
are isolated polymers ~24~ in good solvents or at high temperatures. We call 
this state of a random fractal the extended state, because in this state a 
random fractal has its smallest value of D. 

Let us use the Flory theory approach of Isaacson and Lubensky (26) and 
Daoud and Joanny (27) to determine the fractal dimension of an isolated, 
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random cluster. This method is based on finding the most probable confor- 
mation of a cluster from an approximate free energy. The free energy is 
written as a sum of the elastic free energy and the repulsive free energy. The 
elastic free energy (i.e., the entropic term) tends to make the cluster radius R 
equal to its radius R o in the ideal state where there are no repulsive 
interactions present (see Section 3). The elastic free energy is written 

Fe, = R 2/R ~ (4) 

This term is assumed to be the same for any random structure. Since N ~ R 4 
for an ideal branched fractal, then 

Fei = R 2/N1/2 (5) 

In an isolated cluster the excluded volume effect acts like a repulsive two- 
body interaction. Within the Flory theory (2z-27) the interactions between each 
of the N elements of the cluster and all the N -  1 elements is approximated 
as an average interaction spread over a volume R d. This repulsive free 
energy is written (22-2v) 

Frep =. N2/R d (6) 

Minimization of the total free energy 

R 2 N 2 
F = F e l  + F r e p  - NI/2 3 R e  (7) 

with respect to R gives 

N ~ R ~, with D = 2(d + ~2A (extended state) (8) 
5 

This result was first obtained by Isaacson and Lubensky (26) and by Daoud 
and Joanny (27) for branched polymers in the dilute limit. 

An inspection of the expression for D shows that it has two important 
characteristics: First, it depends strongly on the spatial dimension d, and 
second, there exists a critical dimension d c = 8 at which D takes on the value 
D = 4 corresponding to the ideal random model, i.e., the model with no 
correlations. Above the critical dimension correlations due to the excluded 
volume effect are unimportant and D does not change any longer. The value 
d e = 8 ,  is the well-known result for branched polymers and lattice 
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animals. (17'25) Lattice animals (8'17-19) are random configurations obeying 
equilibrium statistics and can be considered as a model for isolated random 
fractals. Predictions of the Flory formula, (8), are in excellent agreement 
with the known results for lattice animals. Recently, Schaefer and Keefer (48) 
have used small-angle X-ray scattering technique to measure D for silica 
condensation polymers and find that their result is in agreement with (8). 

4.2. Compensated State 

In the previous section we investigated the conformation of a single 
isolated cluster and found that it has a highly extended structure with a 
relatively low D. In this section we consider the effects which tend to 
increase D. Let us begin by studying the conformation of one large cluster of 
size N in the presence of other clusters having a distribution of cluster sizes. 
Clearly, the large cluster does not feel the presence of the other clusters as 
long as their average size is small compared to the size of the large cluster. 
On length scales much larger than the radius of an average cluster the cluster 
interacts only with itself and is swollen. However, as pointed out by 
Edwards (49) and de Gennes ~2~ in the context of polymers, as the average size 
of the other clusters increases they tend to screen the excluded volume effect 
experienced by the large cluster. If the average cluster size is M, then the 
("screened") repulsive free energy for the large cluster is written (25) 

1 N 2 
Fr p = (9) 

Note that as long as M is independent of N, i.e., M ~  O(1), (9) is identical to 
(6) and presence of other clusters does not change the conformation of the 
large cluster. However, when M does depend on N, then the screening effect 
changes the fractal dimension of the cluster. 

The best examples of systems with a distribution of cluster sizes are 
percolation and thermal critical phenomena, e.g., Ising model, Ports model, 
etc. Under equilibrium conditions, in a critical system consisting of a 
distribution of cluster sizes, the mean cluster size diverges at the critical 
point. Simple scaling arguments give that M ~ N y/Dv, where 7 and v are the 
susceptibility and the correlation length exponents, respectively. In the spirit 
of the Flory theory, (z2-2~) we use the mean-field values 7 = 1, v = 1/2, and 
D = 4 to find M --~ N 1/2 at the critical point. Substituting this result in (9) we 
find 

Fre p = Na/2/Rd (critical point) (10) 
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Adding (10) and (5) together we find the total free energy at the critical 
point 

R 2 N3/2 
F = ~ + R-- ~ (critical point) (11) 

Minimization of (11) with respect to R gives 

d + 2  
N ~ R D, with D = ~ (compensated state) (12) 

This result is expected to hold for any random critical cluster in the presence 
of a distribution of clusters whose mean cluster size diverges as N 1/2. The 
best examples are critical clusters in thermal critical phenomena. 

We can determine the upper critical dimension for critical clusters by 
letting D = 4  in (12). The result, dc=6 ,  is well established for 
percolation, ~2~'26) but appears to disagree with the result d c = 4 for thermal 
critical phenomena. (5~ In order to resolve this problem, let us first point out 
that the usual upper critical dimension, d c =  4, refers to the dimension above 
which thermal correlations in a critical system become unimportant. Above 
d~ = 4, the thermal and the magnetic scaling powers take on their mean field 
values~5~ (Yr = 2, Yh = 3, respectively), indicating that thermal fluctuations 
above four dimensions are of the mean field type. In contrast to the usual 
critical exponents, deviation of D from its mean field value (i.e., D = 4) is a 
measure of the geometrical correlations (i.e., excluded volume) in the system. 
Therefore the result d e = 6 for the fractal dimension implies that although 
thermal fluctuations above d =  4 are unimportant, geometrical correlations 
are nontrivial. 

In order to show how D can vary above d = 4 ,  in analogy with 
percolation, (4'2~ we introduce a ghost field, H, which couples to active 
bonds in a critical cluster (see Section 2). The essential difference between 
this field and the usual mgnetic field is that the magnetic field is conjugate to 
the order parameter, (5~ whereas the ghost field is conjugate to the 
geometrical size of the cluster, i.e., N. (s) Therefore, for d~< 4 the magnetic 
scaling power Y~t calculated from the ghost field is identical to the usual Yh, 
whereas for d > 4 this field determines the fractal dimension D (which does 
not coincide with Yh above d = 4). Renormalization group results (29) for the 
Ising model in six dimensions can be interpreted as giving D = Yn = 4, in 
agreement with Eq. (12). 

The above results show that the presence of many clusters and the 
divergence of the mean cluster size at the critical point leads to the screening 
of the excluded volume effect and an increase in D. Therefore, we call this 
the compensated state of a random fractal, because in this state the excluded 
volume effect is compensated for by the screening effect. 
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Although the Flory theory properly takes the screening into 
account, ~25'26) it ignores the details that depend on the statistics of the 
system, e.g., n and q in the n-vector and the q-state Potts models, respec- 
tively. However, as can be seen from Table I, these details do not seem to be 
important, because systems belonging to many different universality classes 
appear to have approximately the same value of D. Therefore, it is important 
to ask the question: Why do all critical clusters have almost the same value 
of D? 

In order to answer this question, let us introduce two types of length 
scales in the problem: First, the thermal correlation length ~ which diverges 
with the usual thermal correlation length exponent at the critical point, and 
second, the geometrical length scale of the cluster R, e.g., the cluster 
diameter, which also diverges at the critical point, but with the exponent lID 
and as a function of the cluster size N [see Eq. (2)]. Away from T c, there 
exist large clusters in the system whose geometrical length R is large 
compared to the thermal correlation length ~. The reason is that in contrast 
to ~ which is strongly temperature dependent, R depends only on the 
geometrical correlations that are mainly function of the spatial dimension. 
Therefore, only a few bonds are needed to join these large clusters together 
to form an infinitely large critical cluster at the critical point. As the critical 
point is approached, these bonds are formed by the increase in thermal 
correlations between the elements belonging to neighboring clusters. Thus, 
the only effect of thermal correlations is to produce a few links between 
existing clusters and join them together. The overall geometrical shape of the 
critical cluster is independent of the details of the thermal interactions and 
depends primarily on the dimensionality d and the screening effect discussed 
above. Quantities which determine the symmetry of the order-parameter, e.g., 
n in the n-vector model or q in the q-state Potts model, act as symmetry- 
breaking perturbations which produce slight differences in the values of the 
fractal dimension of the different models. If these were not present, then all 
critical phenomena would have had exactly the same fractal dimensions. 
This result provides a clear physical interpretation for the Suzuki univer- 
sality hypothesis. ~2~) 

The above description of the compensation of the repulsive interactions 
was based on the concept of screening. Another way to reduce the strength 
of the repulsive interactions is by introducing attractive interactions between 
the elements of an isolated cluster. (z7'51) In order to discuss this case we 
write the repulsive free energy (5) in its generalized form ~27'51) as a power 
series in the density p = N/R ~ as 

Fre p ~-U(w2p + w3P 2 + . . . )  (13) 

where w2, w3 .... are the virial coefficients which include the effect of 
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interactions between pairs, triplets, etc. The extended state discussed in 
Section 4.1 corresponds to the limit where the first term in (13) dominates. 
However, in the presence of attractive interactions w 2 vanishes and it 
becomes necessary to keep the w 3 term on the right-hand side of (13). (27'5~) 
The point at which the second virial coefficient w 2 vanishes is called the 
Flory theta point in polymer science. (22'24) Therefore, at the compensation 
point the repulsive free energy is (2v'51) 

Fre p = N 3 / R  2a (compensation point) (14) 

Minimization of the total free energy 

R 2 N 3 
F - -  N1/2 ~- R2 a (15) 

with respect to R gives 

N ~ R  ~, with D -  4(d + 1) (compensated state) (16) 
7 

This result was first obtained by Daoud and Joanny (zv) for the conformation 
of an isolated branched polymer at the theta point. In analogy with 
the previous results for the compensated state, (12), this expression also 
predicts d c = 6. 

In summary, at the compensation point, which can be brought about by 
either geometrically screening the excluded volume effect, or, by compen- 
sating it by introducing attractive interactions, the fractal dimension D is 
increased. Large clusters at the critical point in thermal phase transitions and 
polymers at the theta point are examples of random fractals in the compen- 
sated state. 

4.3.  Collapsed State 

Let us now study the conformation of a random fractal, first, among 
other clusters in a system below the critical point, and second, in isolation, 
but in the presence of attractive interactions such that the second virial coef- 
ficient w2 < 0. We shall find that in both cases the fractal object has a highly 
compact, or globular, conformation; we call this the collapsed state of the 
random fractal in analogy with the collapsed state of polymers. 

Consider a large cluster of size N among other clusters in a system 
below its critical point. Under this condition, the mean cluster size M is not 
a critical object and the relation M ~ N 1/2 does not hold. The reason is that 
owing to the mutual excluded volume effect, in concentrated solutions 
clusters can grow only by joining to other clusters, i.e., by nucleation. This 
means that we can no longer distinguish between a characteristic cluster size 
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N and a mean cluster size M; the whole system is now composed of clusters 
having roughly the same size, i.e., M ~ N. 

In order to determine the conformation of the clusters under this 
condition, we follow the approach used by Daoud and Joanny ~zT) to study 
the conformation of a branched polymer in a monodispersed melt, i.e., a 
solution of polymers of the same size, and write the total free energy of the 
system as 

F = - ~ 7 - f + R  a log(1 - 0 )  (17) 

where ~ is the volume fraction occupied by the elements of the fractal of size 
N. Assuming that M ~ N, and minimizing (17) with respect to R one finds 

N ~ R D, with D = d (collapsed state) (18) 

Comparing this result with the purely random fractal, D = 4, we find d c = 4. 
This implies that this type of random clusters are compact up to d = 4. For 
this reason, we call this state of the random fractals the collapsed state. 

Now let us consider the case of an isolated fractal below the compen- 
sation point, i.e., when the attractive interactions are dominant. In this case 
the second virial coefficient, w z, is negative and cannot be ignored in (13). 
Conformation of the fractal is determined by the balance between the first 
two terms in (13). The result is identical to (17) with d c =  4, as before. 
Therefore, the conformation of a single random fractal below the compen- 
sation point is the same as that of a large cluster below the critical point. 

5. SUMMARY AND CONCLUSIONS 

Conformation of a random fractal formed in an equilibrium process 
depends on the strength of the excluded volume effect. When the excluded 
volume effect is the only dominant force in the system, e.g., for an isolated 
cluster without attractive interactions, the fractal has an extended or highly 
ramified structure. We call this the extended state ot ~ a random fractal. The 
excluded volume effect can be reduced either by introducing other clusters in 
the system, or, by introducing attractive interactions between the elements of 
an isolated cluster. Within the Flory theory, both effects lead to more 
compact structures having an upper critical dimension of six. We call this 
the compensated state of a random fractal. In particular, critical clusters in 
thermal phase transitions have this type of structure, i.e., they are in the 
compensated state. Therefore, from the point of view of the geometry of their 
clusters, all critical phenomena can be regarded as belonging to a single 
"grand" universality class. One consequence of this result is that the upper 
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crit ical  dimension for the fractal  d imension of  cri t ical  clusters is 6 instead of  

4. Final ly ,  when the at t ract ive interact ions fully compensa te  the repulsive 

interactions the random cluster has a collapsed structure,  i.e., D = d for low 
dimensions,  but  for higher dimensions (d > 4) it has the structure of  an ideal 
r andom fractal  without excluded volume, with D = 4. 
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